

Bio/Diversity Project: Lesson Title: Butterflies and Moths

Teachers: Monica Kothe & Jared Igbinoba

Edited by: Elena Greenberg

Grade Level: 4th grade

Arizona Science Standard:	 4.L4U1.11 Analyze and interpret environmental data demonstrate that species either adapt and survive or go extinct over time.
Content Objective: Math, Reading, Science, Writing, Other:	 Students will be able to describe adaptations in coevolution between butterflies, moths, and plants in the Sonoran Desert. Students will be able to differentiate between different species of butterflies, moths, and the plants they pollinate
Scientist of the Week:	 Eduardo Rendon-Salinas Part of the Monarch Program at the World Wildlife Fund Mexico Studies monarch butterflies and the links between migration and deforestation Publishes in both English and Spanish

Vocabulary	Materials
 Proboscis 	 Non-noise making party blowers
Diurnal	 Double sided tape
 Nocturnal 	 Small plastic cups
 Predation 	 Yellow and orange colored pom-poms
	 http://butterflyprojectnyc.org/wp-
	content/uploads/2009/12/butterfly-
	curriculum.pdf (page 11 handouts)

Guiding Questions:

- How do different butterfly and moth species pollinate different flower species?
- What are adaptations that butterflies and moths have developed over time?

Engagement/Introductory Activity:

Start the lesson with the topic of butterflies:

- Ask students how many species of butterflies they think there are in the world
 - O Answer: over 160,000 different species of butterflies
 - o In the Sonoran Desert: 250 species
- List a few common species that are specific to the Sonoran Desert and the plants they pollinate
 - o American Snout -- Aster
 - Mormon Metalmark -- Rabbit brush
 - o Pipevine Swallowtail -- Pipevine
- Show students a video of how butterflies collect nectar and pollinate

- o https://www.youtube.com/watch?v=Zb-x9Nvg4jg
- Butterfly Adaptations have long thin legs, and don't have a place to store pollen
 - They are not as efficient as bees in pollinating flowers

Next, move on to the topic of *moths*:

- Ask students how many species of moths they think are in the world
 - o Answer: 142,000 species
 - In the Sonoran Desert = ~ 2,750 (not a precise number)
- List a few common species that are specific to the Sonoran Desert and the plants they pollinate
 - O Yucca moth -- yucca
 - O Hornworm -- tobacco
 - Looper -- cabbage, broccoli
- Moth Adaptations:
 - White flowers that are visible at night
 - o Flowers that are sweet smelling
 - O Some can hear sounds that bats make

Show students <u>a diagram</u> on how to differentiate butterflies and moths. Share with them the following information:

- When a butterfly lands and rests on a plant, it holds its wings vertically, while moths tend to rest with their wings folded back almost horizontally
- Moths have heavy, furred bodies, whereas the butterflies have more delicate, slender bodies with little hair
- Butterfly antennae are thin and end with a knob at the tip. Moth antennae are often feathery and without a knob.
- Not all moths are night fliers

Exploratory Activity:

 Students will explore how yucca moths collect pollen from the yucca flower while avoiding natural conditions, such as predators!

Prep work:

- Place cups with double sided tape on the bottom around the classroom tables.
 Fill every cup with yellow colored pompoms, and fill only a few with yellow and orange colored pompoms. Orange pompoms (in every cup) represent nectar while yellow pompoms (in only a few) represent pollen.
- Cover the tips of the party blowers with a thin line of double sided tape at the
 end. This will allow students to pick up pollen when they extend their proboscis.

Game rules:

• The moths will try to obtain nectar while also collecting pollen. They must try to transfer pollen to other cups to ensure that every cup has pollen in it.

- Moths cannot use their hands to reach into the flowers or collect nectar/pollen they can only use their proboscis! The only time they can use their hands is to
 drop pollen off at another flower.
- If a cup tips over and nectar or pollen spills, that flower is dead and out of play.
- If a party blower breaks, then the proboscis is broken, which means that moth is injured and dies.
- The teachers will be the predators (bats). While the moths are collecting pollen and nectar, the bats will have to walk around, clicking their tongues (simulating a bat's echolocation).
- When a yucca moth hears a bat approaching, it can avoid being eaten by sitting until the bat passes.
- If a bat tags a standing yucca moth, it is eaten. The moth must take a seat at their table and leave the play area.
- After a couple of minutes, end the activity and ask the moths to count how much nectar they collected on their proboscis. They need at least 5 pompoms to survive the game.

Explain:

- Ask students to reflect on the activity
 - O Did they survive?
 - O What was challenging?
 - O What are other factors that could affect moth populations?
- Have students compare this process of collecting nectar and pollen to that of birds and bees. Which is more efficient? Which is least efficient?
- Have students color and label butterfly anatomy. Have them highlight the parts that are most important for pollination:
 - o Proboscis, legs, bristles

Extension Activity/Questions:

- Explain how migration patterns of butterflies are affected by climate change
 - Monarchs rely on temperature cues to trigger migration in both directions
- Talk about how urbanization has affected light colored butterflies and moths so that they stand out more to their predators.
 - Ask students: How would this affect their populations? How would this affect pollination?
- Relate to the prior bee extension activity in how climate change is affecting bee populations.
 - O Ask students: What would happen if both bees and butterflies / moths were impacted?

Evaluation Activity:

- Moths vs. Butterflies Matching Game:
 - Have students point to which images on a PowerPoint are butterflies and which are moths

